13th Proficiency testing scheme for chemical analysis of Water in Africa

Frieda Nambahu NamWater Applied Scientific Services Windhoek Namibia

Namibia Water Corporation Ltd

NAMWATER

- The bulk water supplier for Namibia
- ✓Established in 1997 from MAWF
- 100% GRN owned
- /+/- 80 million m3 potable water per annum
- 28 000 customers
- Asset base N\$4 billion
- 670 employees
- Supplies all towns except 5
- Operating on cost recovery basis since establishment

OUTLINE

- Background of the SADCMET PT scheme
- Participation
- **Growth of the SADCMET PT Scheme**
- Overview of a PT round
- ✓ Details of the PT process
- ✓Evaluation & Assessment
- Performance scoring
- Changes and Progress of Parameters
- Summary of the Parameters
- **Overall Success**
- Challenges 2017
- Conclusion M Conradie

BACKGROUND OF THE SADMET PT SCHEME

And in case of the second s		
	2004	The first workshop was held in February in Windhoek, Namibia, with participants from 16 countries where the need for a PT scheme was identified. Training on basic issues of quality in analytical laboratories was also addressed at this workshop.
C	2004	1 st PT round; Evaluation workshop in Pretoria, South Africa
	2005	2 nd PT round; Evaluation workshop in Dar es Salaam, Tanzania Training session on measurement uncertainty
	2006	3rd PT round; Evaluation workshop in Gaborone, Botswana Training session on method validation and control charts
	2007	4th PT round; Evaluation workshop in Dar es Salaam, Tanzania Training session on validation and measurement uncertainty
NAM Namibia Wate		October: Poster presentation at the Eurachem workshop in Proficiency testing in analytical chemistry, microbiology and medicine in Rome, Italy

BACKGROUND OF THE SADCMET PT SCHEME cont..

5 th PT round; Evaluation workshop in Kampala, Uganda Training session on the Management requirements of the ISO17025			
6 th PT round; Evaluation workshop in Mahé, Seychelles			
Test & Measurement conference: Presentation of Chemical analyses of water in Africa, South Africa			
7 th PT round; Evaluation workshop in Windhoek, Namibia Training session on estimation of measurement uncertainty using validation and quality control			
October: Poster presentation at the Eurachem Workshop in Proficiency testing in analytical chemistry, microbiology and laboratory medicine in Istanbul, Turkey			

BACKGROUND OF THE SADCMET PT SCHEME cont..

2011	8 th PT round; Evaluation workshop in Port Louise, Mauritius Training session on ensuring the quality of analytical results – Trueness and Precision
2013	10 th PT round; Evaluation workshop in Nairobi, Kenya Training session on control charts
2014	11 th PT round; Evaluation workshop in Lusaka, Zambia Training session on measurement uncertainty
	October: Poster presentation at the Eurachem workshop in Proficiency testing in analytical chemistry, microbiology and laboratory medicine in Berlin, Germany
2015	12 th PT round; Evaluation workshop in Gaborone, Botswana Training session on Inter-laboratory tests, basic statistics and control charts

% PARTICIPATION PER COUNTRY

Let's go forward

LABORATORIES PER COUNTRY

	2006	2007	2008	2009	2010	2011	2013	2014	2015	2016
Angola	0	0	1	0	0	0	0	0	0	0
Botswana	2	4	2	3	3	3	3	3	3	3
Burundi					1	1	1	2	2	2
Congo					4	5	3	8	7	5
Eritrea	0	0	1	0	0	0	0	0	0	1
Ethiopia	1	0	0	0	0	1	1	2	1	2
Ghana						1	0	0	0	0
Kenya	5	3	3	7	9	7	12	13	8	10
Lesotho	1	1	1	1	1	1	1	1	1	1
Madagascar	2	2	3	3	2	2	2	3	3	3
Malawi	2	3	1	1	2	2	1	1	1	2
Mauritius	4	3	5	6	6	5	4	5	5	4
Mosambique	2	0	0	0	0	0	0	0	0	0
Namibia	3	3	3	3	3	3	3	3	3	4
Rwanda					1	1	1	1	0	0
Seychelles	2	1	1	1	1	1	1	3	3	3
South Africa	0	1	1	1	1	1	1	1	1	1
Swaziland	0	1	2	3	0	0	0	0	1	1
Tanzania	6	12	11	12	13	10	12	15	18	14
Uganda	5	5	5	5	4	5	4	2	3	5
Zambia	2	3	1	3	3	1	1	2	2	2
Zimbabwe	2	5	5	5	4	4	6	7	5	5
Expert labs										3
TOTAL	39	47	46	54	58	54	57	72	67	71

GROWTH OF THE SADCMET PT SCHEME

OVERVIEW OF A PT ROUND

OVERVIEW OF A PT ROUND cont..

DETAILS OF THE PT PROCESS

Preparation phase

Sample bottles:

- Wash all 480 bottles twice with deionized water
- Bottles & caps were put in the oven @ 60 °C overnight
- Check dryness
- Cap bottles to prevent them from dust
- Prepare the exact amount of labels for the number of bottles (480 for 80 laboratories)
 Stick labels on the bottles
- Complete for all the sample bottles and store the bottles in numbered crates

Balances:

Namibia Water Corporation Ltd

- Calibration of the balances is done by an external body (Namibian Standards Institution)
- Calibration certificates are obtained for the 3 balances
- Verification with certified internal mass pieces

Purity:

The certificates of all the salts and wires are obtained
 The purity for all substances and wires is used to calculate the reference values

Glassware:

Label the glassware appropriately

Arrange the glassware accordingly to create a systematic flow

Sample preparation phase

Weighing of the stock solution

- Weigh the different target masses for the 3 levels of each parameter in a beaker by difference on balance
- Start with the wires since the wires needs to digest for the substance to dissolve completely
- **Continue with the salts**

Preparation of stock solutions

Weigh empty flask, transfer the substance into the volumetric flask

- Fill up the flask and weigh the final mass
- Dilutions, especially for the heavy metals, Weigh 100g of stock solution in a beaker by difference weighing

Follow the same procedure for all the 20 parameters(3 levels)

DETAILS OF THE PT PROCESS

Washing of sample bottles

Weighing of the stock solutions

DETAILS OF THE PT PROCESS

Digestion of the wires

Weighing of the stock solutions

Preparation of bulk samples

Initial weighing of the empty containers
Fill the containers with deionized
Calculate target weight from density
Rinse stock solutions into the 100L container
Fill to target weight
Stir combined solution for 20 minutes

Anions : SO₄, Cl, NO₃, F, PO₄, TDS, Conductivity

Cations : Na, K, Ca, Mg, Fe, Mn, Cd, Cu, Pb, Zn, Al, As, Cr, Co, Ni 4 5 6

Sample dispensing

- After 20 minutes of stirring, 1 L is flushed out
- The conductivity of the sample is checked before dispensing into the sample bottles and after every 20 samples
- **Tank is washed properly (4-5times) with deionized water between the batches**
- Before starting with the next batch, check the conductivity of the wash water until it reads the same as the deionized water
- Pack the samples in the appropriate crates and pack the crates into the walk in fridge
 Samples kept at 4°C in the Fridge

Preparation of the documentation

- Prepare hard copy of results sheets and the method information
- Prepare all the labels and documentation for transportation for all the countries and participants

DETAILS OF THE PT PROCESS

Preparation of bulk samples

Dispensing of samples

Packaging of the samples

Request quotes from the courier
Pack the samples (one at a time) into the boxes
Add documentation and addresses of all the participants
Confirm the cost with the PTB to proceed

Pick up of the parcels

Parcels were pick up on the 07 July 2016 at NamWater

- Delays:
- Some parcels were left behind by the courier and were picked up later

DETAILS OF THE PT PROCESS

Left NamWater on 07 July 2016

Testing phase

Calculation of reference values

Identity all sources of uncertainty in the analytical measurements and list them with the use of a fish bone diagram
mrssque (calibration 1) mrssque (calibration 2) Fsources of buoyancy

The identified sources were:

- Purities of the substances used
- Uncertainty of the three balances used
- Uncertainty of molecular mass were neglected
- Density of final samples
- Buoyancy

$$c_{lot} = \frac{m_{K_2 S O_4} \cdot F_{S O_4 / K_2 S O_4} \cdot P \cdot m_{ss} \cdot \rho_{lot}}{m_{ss_t} \cdot m_{lot} \cdot K}$$

Density

 Samples and a bottle with pure water were kept in the balance room

- Temperature of the water and the samples were measured with a calibrated thermometer
- A 100mL pycnometer was used to determine the density of the 6 Samples
- The pycnometer was filled with water and weighed10 times

 Between each measurement the pycnometer was opened and filled repeatedly to determine the uncertainty of the filling process

The pycnometer was filled and weighed with the 6 samples 3 times repeatedly

The densities and uncertainty of the measurements were calculated

Pycnometer

Measurement uncertainty of reference values

- The combined standard uncertainties (mg/l), the combined relative uncertainty(%), the combined expanded uncertainties (mg/l) and the combined relative standard uncertainty (%) were calculated and reported
- The size of the different contributions was compared using a histogram showing all the standard uncertainties
- The reference values were calculated with the combined expanded standard uncertainty taken into consideration for all the parameters for the different levels

The biggest uncertainty components from histograms that was identified were:

 Fe, Mn (Level 1 & 3), Al, Cu, Zn, Ni, As, Cd, Co

Purity of salts

 SO, Cl, F, NO₃, PO₄, Ca, Mg, Na, K, Mn (Level 2), Pb, Cr ,

EVALUATION & ASSESSMENT

- Reference values are calculated from the synthetic, gravimetrical samples with an uncertainty budget
- Calculation of standard deviation is done by using the Algorithm A method from ISO 13528 provided it is lower than the calculated value
- Where the calculated value is higher, the fitness-for-purpose value is used
- The fitness-for-purpose [limit] value was agreed on between participants
 The process that applied for the elimination of gross outliers is:
 - All values < ref.-value/8 and all values > ref.-value * 8 were excluded before applying statistical procedures

The report contains:

- a graphical display of lab results vs the assigned value to assist with corrective actions
- A method specific evaluation to assist the laboratories in methods choices
- Assistance is provided for laboratories that need corrective actions

PERFORMANCE SCORING

- The assessment of performance is based on Z-scores
- ✓ Use of Z-scores are a common practice in the assessment of laboratory results
- ✓ Z-scores reflects the actual accuracy achieved the difference between the participant's result and the reference value
- A score of zero implies a perfect result
- Z-scores are rounded to one digit after decimal point as requested by ISO17043 and ISO13528
- ✓ Usually laboratories produce scores between -2 and 2
- The sign(i.e., + or -) of the score indicates a negative or positive error respectively.

 - * 2.0 < | z-score | < 3.0 questionable</p>

CHANGES AND PROGRESS OF PARAMETERS

PARAMETER	Std Limit (%)
Sulphate	10
Chloride	10
Fluoride	10
Nitrate	10
Phosphate	10
TDS	10
Conductivity	10
Calcium	10
Magnesium	10
Sodium	10
Potassium	10

PARAMETERS	Std Limit (%)
Iron	20
Manganese	20
Aluminium	20
Lead	20
Copper	20
Zinc	20
Chromium	20
Nickel	20
Cadmium	20
Arsenic	20
Cobalt	20

RANGES FOR PARAMETERS

Namibia Water Corporation Ltd

	PARAMETER	RANGES	PARAMETER	RANGES
10000	Sulphate in mg/l	9.50 - 80.00	Iron in mg/l	0.09 - 4.61
	Chloride in mg/l	10.00-73.40	Manganese in mg/l	0.03 - 5.10
-	Fluoride in mg/l	0.20 - 2.54	Aluminium in mg/l	0.05 – 4.41
G	Nitrate in mg/l	9.10 - 88.00	Lead in mg/l	0.05 – 3.33
	Phosphate in mg/l	3.20 -30.50	Copper in mg/l	0.05 – 4.05
	TDS in mg/l	0-1000 mg/l	Zinc in mg/l	0.45 – 5.89
	Conductivity in mg/l	0-400 mS/m	Chromium in mg/l	0.05 – 2.90
	Calcium in mg/l	8.40 - 90.0	Nickel in mg/l	0.06 – 3.55
	Magnesium in mg/l	7.45 – 55.3	Cadmium in mg/l	0.02 - 1.10
	Sodium in mg/l	8.50 - 90.0	Arsenic in mg/l	0.04 - 1.20
	Potassium in mg/l	5.00 - 50.0	Cobalt in mg/l	0.05 – 2.68
NAMW	ATER			

SULPHATE

Summary Sulphate

- Average recovery was higher than in the previous round with 95.9 %
- STD are still > 10 %, especially for low conc.
- 47 data points outside the limits
- 28.6 % of methods still classified as "other"

SULPHATE

25.8% of the data is outliers (32.1% in 2015)

Namibia Water Corporation Ltd

CHLORIDE

Summary Chloride

- Average recovery was higher than in the previous round with 103.3 %
- STD are still > 10 %, especially for low conc. (13.79%)
- 31 data points outside the limits
- 16.2 % of methods still classified as "other"

CHLORIDE

15.7% of the data is outliers (36.9% in 2015)

FLUORIDE

Summary Fluoride

- Average recovery was 90.4 %
- STD are still > 10 %, especially for low conc. (20.7%)
- 30 data points outside the limits
- ✓ 23.8 % of methods still classified as "other"

FLUORIDE

23.1 % of the data is outliers (44.4% in 2015)

Summary Nitrate

- Average recovery was 82.5 %
- STD are still > 10%, especially for low conc. (Sample 1 - 26.8%; Sample 2 24.0%, Sample 3 - 27.2%)
- ✓ 69 data points outside the limits
- 41.6% methods still classified as "other"

Wrong units again as NO_3^--N instead of NO_3^-

Wrong units again as NO₃⁻-N instead of NO₃⁻

Wrong units again as NO₃⁻-N instead of NO₃⁻

39.9 % of the data is outliers (46.5% in 2015)

Summary Phosphate

- Average recovery was 95.9 %
- STD are still > 10%, especially for low conc. (Sample 1 – 31.72%; Sample 2 28.81%, Sample 3 – 23.44%)
- ✓ 69 data points outside the limits
- 32.9 % of methods still classified as "other"

most probably reported in PO₄³⁻-P instead of PO₄³⁻

most probably reported in PO₄³⁻-P instead of PO₄³⁻

most probably reported in PO₄³⁻-P instead of PO₄³⁻

Let's go forward

Namibia Water Corporation Ltd

36.8% of the data is outliers (34.6% in 2015)

TOTAL DISSOLVED SOLIDS (TDS)

Summary TDS

- Average recovery was 96.3 %
- STD are between 12.0-21.2 % for low conc. (21.2%)
- 44 data points outside the limits
- 29.3 % of methods still classified as "other"

TDS

NAMWATER Namibia Water Corporation Ltd 25.3% outliers (29.6.6% in 2015)

CONDUCTIVITY

Summary Conductivity

- Average recovery was 100.4 %
- STD are all < 10 %, Sample 1 6.7%; Sample 2 – 8.2 %, Sample 3 – 6.9%)
- ✓ 52 data points outside the limits
- ✓ 29.2% of methods still classified as "other"

CONDUCTIVITY

Namibia Water Corporation Ltd

27.5 % of the data is outliers (34.5 % in 2015)

CALCIUM

Summary Calcium

- Average recovery was 98.2 %
- STD > 10 % for all three levels (lowest level 23.63 %)
- ✓ 52 data points outside the limits
- v 28.1% of methods still classified as "other"

CALSIUM

MAGNESIUM

Summary Magnesium

- Average recovery was 97.3 %
- STD below 20 % for Sample 5 and 6
 Sample 4 (lowest level 27.42 %)
- ✓ 52 data points outside the limits
- 28.1% of methods still classified as "other"

MAGNESIUM

29.1 % of the data is outliers (46.2 % in 2015)

SODIUM

Summary Sodium

- Average recovery was 104.2 %
- STD above 10 % for all three samples (lowest level – 26.25 %)
- 45 data points outside the limits
- 40.7% of methods still classified as "other"

SODIUM

Namibia Water Corporation Ltd

32.1 % of the data is outliers (22.5 % in 2015)

POTASSIUM

Summary Potassium

- Average recovery was 106.7 %
- STD below > 10 % for all three levels
- ✓ 53 data points outside the limits
- 42.2 % of methods still classified as "other"

POTASSIUM

36.1 % of the data is outliers (31.4 % in 2015)

IRON

Summary Iron

- Average recovery was 92.0 %
- STD below 20 % for Sample 5 and 6
 Sample 4 (lowest level 42.66 %)
- 41 data points outside the limits
- 44.0% of methods still classified as "other"

23.4 % of the data is outliers (23.0 % in 2015)

MANGANESE

Summary Manganese

- Average recovery was 93.3 %
- STD below 20 % for Sample 5 and 6
 Sample 4 (lowest level 20.17 %)
- 39 data points outside the limits
- 50.9% of methods still classified as "other"

MANGANESE

22.8 % of the data is outliers (30.2 % in 2015)

ALUMINIUM

Summary Aluminium

- Average recovery was 90.2 %
- STD above 20%, 62.2 for lowest level; sample 4 (21.6%) Sample 6 (27.2 %)
- \checkmark 32 data points outside the limits
- 42.2% of methods still classified as "other"

ALUMINIUM

28.8 % of the data is outliers (20.6 % in 2015)

LEAD

Summary Lead

- Average recovery was 99.1 %
- STD below 20 % for Sample 5 and 6
 Sample 4 (lowest level 50.76 %)
- \checkmark 27 data points outside the limits
- 44.5% of methods still classified as "other"

22.3 % of the data is outliers (22.7 % in 2015)

COPPER

Summary Iron

- Average recovery was 96.0 %
- STD below 20 % for all three samples (lowest level – 11.32 %)
- ✓ 21 data points outside the limits
- 45.1% of methods still classified as "other"

COPPER

13.7 % of the data is outliers (20.5 % in 2015)

ZINC

Summary Zinc

- Average recovery was 91.6 %
- STD below 20 % for all three samples (lowest level – 15.1 %)
- 22 data points outside the limits
- 42.2% of methods still classified as "other"

16.3 % of the data is outliers (19.5 % in 2015)

CHROMIUM

Summary Chromium

- Average recovery was 95.6 %
- STD below 20 % for all three samples
- (lowest level 16.5 %)
- ✓ 29 data points outside the limits
- 40.0% of methods still classified as "other"

CHROMIUM

Namibia Water Corporation Ltd

23.6 % of the data is outliers (36.3 % in 2015)

NICKEL

Summary Nickel

- Average recovery was 95.6 %
- STD below 20 % for all three samples
 (lowest level 16.6 %)
- \checkmark 25 data points outside the limits
- 40.0% of methods still classified as "other"

NICKEL

18.5 % of the data is outliers (16.7 % in 2015)

ARSENIC

26.0 % of the data is outliers (22.0 % in 2015)

CADMIUM

Summary Cadmium

- Average recovery was 90.5 %
- STD below 20 % for all three samples (lowest level – 19.6 %)
- ✓ 30 data points outside the limits
- 35.5% of methods still classified as "other"

CADMIUM

24.2 % of the data is outliers (32.5 % in 2015)

COBALT

Summary Cobalt

- Average recovery was 96.5 %
- STD below 20 % for all three samples (lowest level – 12.29 %)
- 22 data points outside the limits
- 13.3% of methods still classified as "other"

COBALT

19.8 % of the data is outliers (13.3 % in 2015)

PARAMETERS ANALYSED

% OVERALL SUCCESS OF ANIONS

% OVERALL SUCCESS OF CATIONS

Let's go forward

% OVERALL PERFORMANCE

Let's go forward

Namibia Water Corporation Ltd

CHALLENGES 2017

Adhere to the stated deadlines

- Clear and fully completed registration forms will be a requirement for participation.
- Absence of registration forms complicates communication
- Results submission done after the due date delay the reports
- We need to improve— still high standard deviations
- Vuse of non-standard methods are high
- The same mistakes are being done Reporting of results in wrong units
- Corrective actions are still not implemented
- ✓Laboratories are still not sending their proof of payments
- Problems with the website (back to manually submitting results)
- ✓Laboratories that registered and requested samples should aim to analyse them as well

CONCLUSION

Overall the results of this PT round show a good performance for many labs - Too many outliers for most of the parameters

- **SDS** are still high for some parameter and levels.
- There are still many labs that are not putting enough emphasis on corrective actions after unsatisfactory results - PT participation does not add any value if corrective actions are not done
- Root cause analyses are not done
- ✓ Method selection is still a big problem Laboratories should identify the gaps that prevent them from applying a proper method
 - A list of recommended methods were compiled and it is sent to all participants but they do not use it
 - * "ICP" reported as a method is not an international method ISO 11885:1996-ICP-AES is !

The same mistakes are being done - Reporting of results in wrong units (N and not NO3 and as P and not PO4

The evaluation and assessment procedure is fit for the purpose

CONCLUSION

Software & report developments

- New software was develop by Dr M Koch to address the changes from ISO/IEC 17043 and ISO 13528.
- Name and address of the PT provider and name of the round can be inserted
- Usage of median is not possible anymore
- Graphical display of kernel densities included. You may find more information about kernel density diagrams <u>http://www.rsc.org/images/data-distributions-kernel-density-technicalbrief-4_tcm18-214836.pdf</u>
- z-scores are rounded to one digit after decimal point as requested by ISO/IEC 17043 and ISO 13528
- assessment changed to satisfactory, questionable, non satisfactory as requested by ISO/IEC 17043 and ISO 13528

CONCLUSION

- PT plays a vital role in laboratory management for ongoing maintenance of confidence and improvement, irrespective of whether or not the laboratory needs to participate for accreditation.
- The SADCMET Water PT schemes offers an additional educational role for participants to help the participants to improve – do not to miss this opportunity!
- The SADCMET Water PT is a good possibility for the participants to compare with peers and with stated fitness-for-purpose criteria
- Frieda Nambahu did a very good job

ACKNOWLEDGMENTS

PTB payment of sample distribution

- Kathrin Wunderlich
- Karin Vondeberg
- **SADCMET**
- Donald Masuku
- Blossom Nkombisa (NMISA)
- University of Stuttgart
- Dr Michael Koch
- Expert labs NMISA; ISWA; IWW
- **NamWater personnel**
- Local coordinators
- Participants
- **√TFDA**

THANK YOU

